Вариант 6 — различия между версиями
Korobko (обсуждение | вклад) |
Korobko (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
= Синтез логических устройств для реализации симметрических булевых функций = | = Синтез логических устройств для реализации симметрических булевых функций = | ||
− | |||
== Введение == | == Введение == | ||
− | |||
При проектировании вычислительных устройств возникает задача реализации на одном логическом устройстве всех булевых функций,принадлежащих определенному классу. В качестве такого класса часто используется класс симметрических булевых функций или некоторые его подклассы. Интерес к симметрическим булевым функциям объясняется тем, что такими булевыми функциями описываются структура и поведение многих типовых устройств вычислительной техники [1]. | При проектировании вычислительных устройств возникает задача реализации на одном логическом устройстве всех булевых функций,принадлежащих определенному классу. В качестве такого класса часто используется класс симметрических булевых функций или некоторые его подклассы. Интерес к симметрическим булевым функциям объясняется тем, что такими булевыми функциями описываются структура и поведение многих типовых устройств вычислительной техники [1]. | ||
К настоящему времени имеется довольно-таки много результатов в области синтеза устройств для вычисления произвольных симметрических булевых функций [2, 3], а также для вычисления фундаментальных [4] и полиномиально-однородных [5] симметрических булевых функций. | К настоящему времени имеется довольно-таки много результатов в области синтеза устройств для вычисления произвольных симметрических булевых функций [2, 3], а также для вычисления фундаментальных [4] и полиномиально-однородных [5] симметрических булевых функций. | ||
== Основные понятия теории булевых функций == | == Основные понятия теории булевых функций == | ||
− | [[Файл: | + | [[Файл:images (1).png|thumb|right|top|дипломная работа]] |
Среди функций одной переменной <m>F=F(x)</m> наибольший интерес представляет функция <m>F(x)=¬x</m> – '''''отрицание (инверсия)''''' переменной. Такая функция называется '''''элементарной''''' булевой функцией одной переменной. | Среди функций одной переменной <m>F=F(x)</m> наибольший интерес представляет функция <m>F(x)=¬x</m> – '''''отрицание (инверсия)''''' переменной. Такая функция называется '''''элементарной''''' булевой функцией одной переменной. | ||
Кроме функции <m>F(x)=¬x</m> к числу элементарных относится 7 булевых функций, зависящих от двух переменных <m>x_1</m> и <m>x_2</m> : | Кроме функции <m>F(x)=¬x</m> к числу элементарных относится 7 булевых функций, зависящих от двух переменных <m>x_1</m> и <m>x_2</m> : | ||
Строка 17: | Строка 15: | ||
* функция <m>F(x_1,x_2)=x_1 \setminus x_2</m> называется '''''штрих Шеффера'''''. | * функция <m>F(x_1,x_2)=x_1 \setminus x_2</m> называется '''''штрих Шеффера'''''. | ||
<br /> | <br /> | ||
+ | [[Файл:1284750149 2.jpg|обрамить|справа|булева алгебра]] | ||
{| cellspacing="0" cellpadding="10" border="1" class=standard | {| cellspacing="0" cellpadding="10" border="1" class=standard | ||
|+Таблица истинности элементарных булевых функций двух переменных | |+Таблица истинности элементарных булевых функций двух переменных |
Версия 18:18, 23 ноября 2013
Содержание |
Синтез логических устройств для реализации симметрических булевых функций
Введение
При проектировании вычислительных устройств возникает задача реализации на одном логическом устройстве всех булевых функций,принадлежащих определенному классу. В качестве такого класса часто используется класс симметрических булевых функций или некоторые его подклассы. Интерес к симметрическим булевым функциям объясняется тем, что такими булевыми функциями описываются структура и поведение многих типовых устройств вычислительной техники [1]. К настоящему времени имеется довольно-таки много результатов в области синтеза устройств для вычисления произвольных симметрических булевых функций [2, 3], а также для вычисления фундаментальных [4] и полиномиально-однородных [5] симметрических булевых функций.
Основные понятия теории булевых функций
Среди функций одной переменной наибольший интерес представляет функция – отрицание (инверсия) переменной. Такая функция называется элементарной булевой функцией одной переменной. Кроме функции к числу элементарных относится 7 булевых функций, зависящих от двух переменных и :
- функция называется конъюнкцией (или логическим умножением);
- функция называется сложение по модулю два;
- функция называется дизъюнкцией (или логическим сложением);
- функция называется стрелкой Пирса (или функцией Вебба);
- функция называется эквивалентностью;
- функция называется импликацией ( посылка (основание), заключение (следствие));
- функция называется штрих Шеффера.
x1 | x2 | F1 | F2 | F3 | F4 | F5 | F6 | F7 |
---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
Определение логической формулы:
- Булева переменная является формулой.
- Если и - формулы, то конструкции , , , , , , - также формулы.
- Других формул, кроме формул, перечисленных в п.1 и п.2, нет.
entity summator is Port ( x1 : in STD_LOGIC; x2 : in STD_LOGIC; pm : in STD_LOGIC; s : out STD_LOGIC; pc : out STD_LOGIC); end summator; architecture Behavioral of summator is begin process (x1,x2,pm) begin s<=(x1 xor x2 xor pm); pc<=((x1 and x2) or (x1 and pm) or (x2 and pm)); end process; end Behavioral;
Заключение
Синтезированы устройства для вычисления самодвойственных симметрических булевых функции трех, пяти и семи переменных.