«Работать добросовестно — значит: работать, повышая свою квалификацию, проявляя инициативу в совершенствовании продукции, технологий, организации работ, оказывая не предусмотренную должностными инструкциями помощь другим сотрудникам (включая и руководителей) в общей им всем работе.

UVM/UVM Cookbook/Sequences/VirtualSequencer

Материал из Wiki
< UVM
Версия от 16:45, 25 июня 2014; ANA (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Проект Методология UVM

UVM Cookbook


Вебинары
Литература

* OVM *

500px-Virtual_sequencer_block_level.gif

A virtual sequence is a sequence which controls a stimulus generation process using several sequencers. Since sequences, sequencers and drivers are focused on interfaces, almost all testbenches require a virtual sequence to co-ordinate the stimulus across different interfaces and the interactions between them.

A virtual sequence can be implemented in one of two ways, the recommended way is to use a stand-alone virtual sequence and the 'legacy' alternative is to use virtual sequence that is designed to run on a virtual sequencer as described here.

A virtual sequencer is a sequencer that is not connected to a driver itself, but contains handles for sequencers in the testbench hierarchy.

Virtual sequences that run on virtual sequencers

A virtual sequence is designed to run on a virtual sequencer by adding code that gets the handles to the sub-sequencers from the virtual sequencer. The most convenient way to do this is to extend virtual sequences from a base class that does the sequencer handle assignment. The virtual sequencer is is part of the UVM component hierarchy and so its sub-sequencer references can be assigned during the connect phase.

Typically, a virtual sequencer is inserted inside the env of a block level testbench, with the connect method of the block level env being used to assign the sub-sequencer handles. Since the virtual_sequence is likely to be in overall control of the simulation, it is usually created in the test run method and started on the virtual sequencer - i.e. virtual_sequence.start(virtual_sequencer);

A useful coding guideline is to give the sub-sequencers inside the virtual sequence a name that respresents the interface that they are associated with, this makes life easier for the test writer. For instance, the sequencer for the master bus interface could be called "bus_master" rather than "master_axi_sequencer".

// Virtual sequencer class:
class virtual_sequencer extends uvm_virtual_sequencer;
 
`uvm_component_utils(virtual_sequencer)
 
// Note that the handles are in terms that the test writer understands
bus_master_sequencer bus;
gpio_sequencer gpio;
 
function new(string name = "virtual_sequencer", uvm_component parent = null);
  super.new(name, parent);
endfunction
 
endclass: virtual_sequencer
 
class env extends uvm_env;
 
// Relevant parts of the env which combines the
// virtual_sequencer and the bus and gpio agents
//
// Build:
function void build_phase( uvm_phase phase );
  m_bus_agent = bus_master_agent::type_id::create("m_bus_agent", this);
  m_gpio_agent = gpio_agent::type_id::create("m_gpio_agent", this);
  m_v_sqr = virtual_sequencer::type_id::create("m_v_sqr", this);
endfunction: build_phase
 
// Connect - where the virtual_sequencer is hooked up:
// Note that these references are constant in the context of this env
function void connect_phase( uvm_phase phase );
  m_v_sqr.bus = m_bus_agent.m_sequencer;
  m_v_sqr.gpio = m_gpio_agent.m_sequencer;
endfunction: connect_phase
 
endclass:env
 
// Virtual sequence base class:
//
class virtual_sequence_base extends uvm_sequence #(uvm_sequence_item);
 
`uvm_object_utils(virtual_sequence_base)
 
// This is needed to get to the sub-sequencers in the
// m_sequencer
virtual_sequencer v_sqr;
 
// Local sub-sequencer handles
bus_master_sequencer bus;
gpio_sequencer gpio;
 
function new(string name = "virtual_sequence_base");
  super.new(name);
endfunction
 
// Assign pointers to the sub-sequences in the base body method:
task body();
  if(!$cast(v_sqr, m_sequencer)) begin
    `uvm_error(get_full_name(), "Virtual sequencer pointer cast failed");
  end 
  bus = v_sqr.bus;
  gpio = v_sqr.gpio;
endtask: body
 
endclass: virtual_sequence_base
 
// Virtual sequence class:
//
class example_virtual_seq extends virtual_sequence_base;
 
random_bus_seq bus_seq;
random_gpio_chunk_seq gpio_seq;
 
`uvm_object_utils(example_virtual_seq)
 
function new(string name = "example_virtual_seq");
  super.new(name);
endfunction
 
task body();
  super.body; // Sets up the sub-sequencer pointers
  gpio_seq = random_gpio_chunk_seq::type_id::create("gpio_seq");
  bus_seq = random_bus_seq::type_id::create("bus_seq");
 
  repeat(20) begin 
    bus_seq.start(bus);
    gpio_seq.start(gpio);
  end 
endtask: body
 
endclass: example_virtual_seq
 
// Inside the test class:
//
task run;
  example_virtual_sequence test_seq = example_virtual_sequencer::type_id::create("test_seq");
 
  //...
  test_seq.start(m_env.m_v_sqr);
  //...
endtask: run
Chaining Virtual Sequencers for vertical reuse

When creating integrated verification environments that reuse block level envs, the virtual sequencers at the different levels of the testbench hierarchy can be chained together, allowing virtual sequences or sub-sequences to be run at any level. To achieve this level of flexibility, both the sub-sequencer handles and the virtual sequencer handles need to be encapsulated at each successive level.

// Virtual sequencer from the UART env
class uart_env_virtual_sqr extends uvm_virtual_sequencer;
// ..
uart_sequencer uart;
bus_sequencer bus;
// ..
endclass: uart_env_virtual_sqr
 
// Virtual sequencer from the GPIO env
class gpio_env_virtual_sqr extends uvm_virtual_sequencer;
// ..
gpio_sequencer gpio;
bus_sequencer bus;
// ..
endclass: gpio_env_virtual_sqr
 
// Virtual sequencer from the SoC env
class soc_env_virtual_sqr extends uvm_virtual_sequencer;
//..
// Low level sequencers to support virtual sequences running across
// TB hierarchical boundaries
uart_sequencer uart;
bus_sequencer uart_bus;
gpio_sequencer gpio;
bus_sequencer gpio_bus;
 
// Virtual sequencers to support existing virtual sequences
//
uart_env_virtual_sqr uart_v_sqr;
gpio_env_virtual_sqr gpio_v_sqr;
 
// Low level sequencer pointer assignment:
// This has to be after connect because these connections are
// one down in the hierarchy
function void end_of_elaboration();
  uart = uart_v_sqr.uart;
  uart_bus = uart_v_sqr.bus;
  gpio = gpio_v_sqr.gpio;
  gpio_bus = gpio_v_sqr.bus;
endfunction: end_of_elaboration
 
endclass: soc_env_virtual_sqr

Coding Guideline: Virtual Sequences should check for null sequencer pointers before executing

Virtual sequence implementations are based on the assumption that they can run sequences on sub-sequencers within agents. However, agents may be passive or active depending on the configuration of the testbench. In order to prevent test cases crashing with null handle errors, virtual sequences should check that all of the sequencers that they intend to use have valid handles. If a null sequencer handle is detected, then they should bring the test case to an end with an uvm_report_fatal call.

// Either inside the virtual sequence base class or in
// an extension of it that will use specific sequencers:
task body();
  if(!$cast(v_sqr, m_sequencer)) begin
    `uvm_error(get_full_name(), "Virtual sequencer pointer cast failed")
  end
  if(v_sqr.gpio == null) begin
    `uvm_fatal(get_full_name(), "GPIO sub-sequencer null pointer: this test case will fail, check config or virtual sequence")
  end
  else begin
    gpio = v_sqr.gpio;
  end
  if(v_sqr.gpio_bus == null) begin
    `uvm_fatal(get_full_name(), "BUS sub-sequencer null pointer: this test case will fail, check config or virtual sequence")
  end
  else begin
    gpio_bus = v_sqr.gpio_bus;
  end
endtask: body